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Microscopic Chaos and Diffusion
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We investigate the connections between microscopic chaos, defined on a
dynamical level and arising from collisions between molecules, and diffusion,
characterized by a mean square displacement proportional to the time. We use
a number of models involving a single particle moving in two dimensions and
colliding with fixed scatterers. We find that a number of microscopically non-
chaotic models exhibit diffusion, and that the standard methods of chaotic time
series analysis are ill suited to the problem of distinguishing between chaotic
and nonchaotic microscopic dynamics. However, we show that periodic orbits
play an important role in our models, in that their different properties in our
chaotic and nonchaotic models can be used to distinguish them at the level of
time series analysis, and in systems with absorbing boundaries. Our findings are
relevant to experiments aimed at verifying the existence of chaoticity and related
dynamical properties on a microscopic level in diffusive systems.

KEY WORDS: Chaos; diffusion; Ehrenfest wind-tree model; Lorentz gas;
statistical mechanics; periodic orbits; Brownian motion; billiards; time series
analysis.

1. INTRODUCTION

It is generally assumed that diffusion in macroscopic systems is a result of
chaos on a microscopic scale, following Einstein's 1905 explanation for
Brownian motion, that is, the movement of a colloidal particle due to
thermal fluctuations in the surrounding fluid. We describe chaos, diffusion
and related properties in detail in Section 3. We define microscopic chaos
(usually shortened to just ``chaos'') in terms of unpredictability as quan-
tified by positive Lyapunov exponents or a positive Kolmogorov�Sinai
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entropy;2 later we will find that properties based on periodic orbits also
provide a useful description of chaotic aspects of the microscopic dynamics.
Note that we restrict the use of the term ``chaotic'' to its usual meaning,
that is a positive Kolmogorov�Sinai entropy; while the properties of peri-
odic orbits are important, we do not classify systems as chaotic or non-
chaotic based on these properties. We call a system diffusive when the
mean square displacement of a particle is proportional to the time, or a
distribution of particles satisfies the diffusion equation.

A recent experiment of Gaspard et al., (1) described below, purports to
show that the diffusion of a Brownian particle is due to microscopic chaos.
While we believe that Brownian motion (including both the Brownian par-
ticle and the solvent) is most likely chaotic, our simulations using non-
chaotic models, in a brief Comment(2) and in greater detail here lead to the
same results as found in the experiment, so that no experimental proof of
microscopic chaos has been given in ref. 1. Here we explore the question of
what kind of experimental measurements or data analysis might be
required to identify microscopic chaotic dynamics, and the connection
between microscopic chaos and diffusion.

We consider generalizations of models of diffusion due to Lorentz and
Ehrenfest (Figs. 1�3), where a single point particle undergoes elastic colli-
sions with a fixed arrangement of circular or square scatterers in two
dimensions, respectively. Collisions with the circular scatterers of the
(chaotic) Lorentz gas lead to exponential separation of nearby trajectories,
that is, a positive Lyapunov exponent, while collisions with the square scat-
terers of the (nonchaotic) Ehrenfest model lead to at most linear separation
of nearby trajectories, and the Lyapunov exponents are all zero. Actually,
we consider models with three types of scatterers, all of which are non-
overlapping: circles as in the Lorentz gas, squares oriented such that their
diagonals are parallel to the coordinate axes and with only four particle
velocity directions as in the Ehrenfest wind-tree model, and squares of
arbitrary orientations with arbitrary particle velocity directions as a
generalization of the Ehrenfest model.

For each of these three models, we consider the following three cases:
an infinite number of randomly placed fixed scatterers as in the original
models of Lorentz and Ehrenfest, a small number of fixed scatterers in an
elementary cell subject to periodic boundary conditions, and an arrangement
of a, finite number of fixed scatterers enclosed by absorbing boundaries.
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2 Specifically, a positive Lyapunov exponent of a dynamical system means that initially similar
states of the system as measured by distance in phase space separate exponentially fast; the
closely related property of positive Kolmogorov�Sinai entropy means that a finite amount
of information per unit time is needed to construct the future phase space trajectory of the
system, knowing the infinite past trajectory to an arbitrary (but finite) resolution.
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Fig. 1. The fixed orientation wind-tree model. There are periodic boundary conditions, so in
the notation of Section 2.3 this is FP8.

Note that a model with periodic boundary conditions can be viewed as an
infinite periodic system. For the purposes of studying properties such as the
mean free time, it is better to view the model as a finite system with periodic
boundaries, but to compute the diffusion coefficient in terms of the growth
of the mean square displacement with time, it is necessary to view the
model as an infinite periodic system.

A link between chaos and diffusion involves a fundamental question of
statistical mechanics, since one has to make a connection between the
microscopic and macroscopic behavior of large systems. The models we
consider here are very special from a physical point of view, but very
attractive from a mathematical point of view, because there is only one
moving particle, rather than a large number as in, for example, Brownian
motion. These can be considered bona fide statistical mechanical models if
the large number of scatterers are included, as long as their lack of motion
is irrelevant to the questions we ask. We believe that our models incor-
porate the essential features needed for a discussion of microscopic chaos
and diffusion.
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Fig. 2. The randomly oriented wind-tree model, with notation RP8.

We now describe the experiment and analysis of Gaspard et al. in more
detail. The position of a Brownian particle in a fluid was measured at regular
intervals of 1�60 s. The experimental time series data wars than interpreted
using standard techniques of chaotic time series analysis, suggesting a
positive lower bound on the Kolmogorov�Sinai entropy, hence microscopic
chaos. The method they used, due to Cohen and Procaccia(3) was adapted
from an approach pioneered by Grassberger and Procaccia.(4) In this method
one analyzes the distribution of recurrences, i.e., instances where the system
approximately retraces part of its previous trajectory in phase space for a
certain length of time, leading to a determination of the Kolmogorov�Sinai
entropy. There is detailed mathematical justification for the method (under
assumptions such as the length of the data set being sufficient to approximate
infinite time limits, see Section 4), but the idea is very simple: recurrences give
useful information about the predictability of the system. If long recurrences
occur very often, it is easy to predict the future of the system from previous
instances similar to the recent part of the trajectory, so the system has a small
or zero Kolmogorov�Sinai entropy, whereas a rapid decay of the frequency
with length of the recurrences indicates a high degree of microscopic chaos.
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Fig. 3. The Lorentz gas, with notation LP8.

Thus, the Cohen�Procaccia method used by Gaspard can be used to cal-
culate the Kolmogorov�Sinai entropy from a time series in principle, but
certain mathematical conditions and limits apply, sometimes restricting its
applicability in practice. Gaspard et al. concluded from their analysis that the
Kolmogorov�Sinai entropy of the system containing the Brownian particle
was positive, and hence that the microscopic dynamics was chaotic.

Subsequently, we showed(2) that the same approach applied to an
``identical'' time series generated by a numerical simulation of the non-
chaotic (infinite, fixed orientation) Ehrenfest model yielded virtually iden-
tical results. This is surprising, since the collisions with the flat sides of
square scatterers do not lead to positive Lyapunov exponents, as described
above. In ref. 2 we attributed the discrepancy to the physical issue of time
scales��the time interval between measurements (1�60 s) was vastly greater
than the typical collision times of the Brownian particle with the solvent
particles in the fluid (approximately 10&12 s). While this is certainly an
experimental problem, it leaves open the question of whether in principle
a similar analysis with a much higher resolution could ever prove from
experimental data that the microscopic dynamics is chaotic or not.
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One aim of the current work is to shed light on this, and related ques-
tions. We perform the same Cohen�Procaccia analysis on all the models
mentioned above, finding that the same results are obtained even for a
model with a periodic array of squares. This rules out the possibility that
the apparently positive value of the Kolmogorov�Sinai entropy is due to a
loss of information associated with the randomness of the many scatterers.
We discuss the relevant time scales in our models, finding a, single micro-
scopic time scale, and we can then qualitatively explain the results of the
Cohen�Procaccia algorithm when the time step is shorter or longer than
this time. We conclude that due to the rarity of recurrences in a diffusive
system, the determination of chaoticity in such a system requires vastly
longer time series than are practical for experimental or computational
work, even when the measurements are taken at microscopic time and
distance scales.

At that point we return to the question of how microscopic dynamics
manifests itself in a time series, as well as in the macroscopic behavior. We
develop a new method which we call ``almost periodic recurrences'' that
selects a particular class of recurrences different from those used in the
Cohen�Procaccia method. Our approach is designed to distinguish systems
based on their periodic orbit properties, which are related to, but not
equivalent to the usual definition of chaos as positive Kolmogorov�Sinai
entropy. We find that, in contrast to the Cohen�Procaccia method, this
method can distinguish between the chaotic Lorentz model and the non-
chaotic Ehrenfest model and thus reveals at least one way in which micro-
scopic chaos is manifest, although on macroscopic scales both models exhibit
diffusion. The basic idea of our method is simple: almost periodic recurrences
are related to periodic orbits which have very different properties in chaotic
and nonchaotic systems, so a search for periodic orbits using recurrences
may distinguish between the two classes of systems. The periodic orbits of
chaotic systems (such as the Lorentz gas) are exponentially unstable, so
many repetitions close to a periodic orbit are unlikely. In contrast, the
periodic orbits of nonchaotic systems (for example our wind-tree models)
can be power law unstable, allowing many repetitions.

The markedly different properties of periodic orbits in the Lorentz and
Ehrenfest models leads to the following important observations about diffu-
sion in finite geometries. Solutions of the diffusion equation with absorbing
boundaries exhibit exponential decay, corresponding to the probability of
a particle remaining in the system for a given time. The randomly oriented
wind-tree model has periodic orbits with power law escape, so that the
escape from the whole system cannot be exponential at long times. The
fixed orientation wind-tree model has no periodic orbits at all, so the par-
ticle cannot remain in the system longer than a fixed maximum time. Both
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of these are examples of situations in which the infinite model satisfies the
diffusion equation by having a Gaussian distribution with the mean square
displacement proportional to the time, but the corresponding finite model
does not satisfy the diffusion equation.

The outline of this paper is as follows: first we introduce our models
(Section 2), and discuss in detail their relevant time scales and chaotic and
diffusive properties (Section 3). Then we discuss the Cohen�Procaccia
method and its inability to distinguish chaotic from nonchaotic dynamics
in our case (Section 4). Finally we introduce our alternative ``almost peri-
odic recurrence'' method and discuss the properties of the periodic orbits
(Section 5), and their consequences for finite systems (Section 6). We con-
clude with a discussion of our results and some open questions (Section 7).

2. THE MODELS

2.1. Definitions

The Ehrenfest wind-tree model describes a point ``wind'' particle moving
in straight lines in the plane punctuated by elastic collisions with fixed
square scatterers, the ``trees.'' In the original model (Fig. 1), the trees are
oriented with their diagonals along the x and y axes, and the wind particle
moves with a fixed velocity in only four possible directions, along these
axes. The trees are located at random positions, with a given number density,
and not overlapping. There is an overlapping version we will not consider; it
exhibits anomalous (sub)-diffusion and non-Gaussian distributions. (5)

Secondly, we consider the case of randomly oriented scatterers
(Fig. 2), which allows all possible wind particle directions. In both the fixed
and randomly oriented cases all Lyapunov exponents are zero, because
a collision from a flat scatterer causes only a linear separation of nearby
trajectories; it does not cause the exponential separation associated with
convex curved scatterers.

Thirdly, we consider the (two dimensional) Lorentz gas (Fig. 3), that
is, a model where the scatterers are circular, and we choose the area and
number density of the scatterers to correspond to the wind-tree models.
This model is known to have normal diffusive properties(6, 7) and is used
here as a comparison to examine the effects of positive versus zero
Lyapunov exponents.

2.2. Numerical Details

For the numerical simulations, we take the velocity of the wind par-
ticle to be 1. For the wind-tree models we take the side length l equal to
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- 2. This is done for computational convenience; space is divided into unit
squares (of side length 1) aligned with the coordinate axes, so that at most
one scatterer can be contained in each unit square. For the Lorentz gas the
circular scatterers have a radius R=- 2�? to give them the same area
l 2=2 as the squares. In all cases the total area considered has a number
of unit squares, L, up to 3500 in both x and y directions, and periodic
boundary conditions are used. To simulate an infinite system, a large value
of L (up to 3500) is used; for the maximum time of 106 time units the par-
ticle never travels far enough to sample the periodic boundary conditions.
To simulate a periodic system, a small size such as L=4 is used; we always
consider the case of finite horizon, so that the time between collisions is
bounded. To simulate a system with absorbing boundaries, an intermediate
size such as L=20 is used; the absorbing boundaries are one distance unit
inside the edge of the system to avoid the possibility of the particle colliding
with a scatterer as well as with its periodic image.

We use a number of scatterers N equal to L2�4. This means that the
number density n=N�L2 is 1�4 in all cases and the proportion of the total
area covered by the scatterers is \=N(l�L)2=1�2. Thus we have an inter-
mediate density of scatterers, which is most convenient from the point of
view of the simulations and also the time scales. For a significantly lower
density, an infinite horizon is much more likely in all but the largest
systems. For a significantly higher density (limited by a maximum of \=1)
the Metropolis algorithm (see below) used to position the scatterers is very
much slower. Also, both for low and high density systems, there is an addi-
tional time scale (see Section 3.1), which complicates the analysis.

We now describe the method used to position the fixed scatterers.
Each configuration of random positions and orientations is obtained from
a version of the Metropolis algorithm, used in ref. 8. The square scatterers
of the wind-tree models are placed initially at points belonging to a square
lattice defined such that they do not overlap, that is, with their centers at
integer coordinates (m, n) such that m+n is even, and their orientation as
in Fig. 1. Not every lattice site is then occupied, depending on the number
density.3 Each scatterer is shifted and rotated a small random amount in
turn, typically a few tenths of a distance unit and of order ten degrees
respectively. If the shift causes an overlap, the move is rejected and the
previous configuration is used. The procedure is repeated with different
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vergence of the shifting algorithm, described next. The random placement leads to large scale
fluctuations in density. These fluctuations would occur anyway as a result of the small shifts,
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shifts and rotations. A large fixed number of shifts are attempted, sufficient
for reasonable measures of the correlation between scatterers to have long
converged to their final values.

If the circles of the Lorentz gas are placed on the same lattice as the
squares they overlap slightly; at the chosen density of \=1�2 there is
enough freedom to allow them to find non-overlapping locations, so that
the final configuration is non-overlapping, as we could check. At higher
densities circles may not find non-overlapping locations, and a close
packed triangular lattice should then be used instead.

2.3. Notation

We now define the notation we will use to distinguish between the
various models. There are a very large number of possible parameters that
could appear in general, referring to the shape of the scatterers (squares,
circles, etc.), different densities and different shaped boundary conditions to
name a few, but for conciseness we limit the notation to include only those
models we use here, in particular keeping the areal density always at
\=1�2. Using square brackets [ , ] to denote different cases, our notation
is [F, R, L][�, [P, A] L]. The first symbol [F, R, L] denotes the type
and orientation of the scatterers, F for fixed oriented squares, R for ran-
domly oriented squares and L for circles (the Lorentz gas). The next sym-
bol [�, P, A] gives information about the boundary conditions, either �,
that is, no boundaries, or P for periodic boundary conditions or A for
absorbing boundaries. The symbols P and A are followed by the size of the
system, L, which is an even integer. Thus the original Ehrenfest model is
denoted F�, while a periodic Lorentz gas with L=8 (containing N=L2�4
=16 scatterers at the density used in our simulations) is denoted LP8 (see
Fig. 3). The latter model is generated by random shifts of the scatterers as
above, ensuring that periodic images of the scatterers do not overlap.
When no confusion can arise, we will sometimes refer to classes of models
with a simplified notation, for example we denote all randomly oriented
wind-tree models as R, and all Lorentz models with absorbing boundaries
as LA.

3. FUNDAMENTAL PROPERTIES

3.1. Time Scales

This section collects a number of fundamental properties and results
that form a basis for Sections 4, 5 and 6. First we consider the important
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issue of time scales, which puts the time series analysis methods of Sec-
tions 4 and 5 into a physical context. Then we consider chaotic properties,
giving known results and conjectures for our models; all of the following
sections use this. After this we study diffusive properties, obtaining some
new results. These are of direct importance to Section 6; the time series
analysis methods are applied only to our diffusive models,4 but the diffu-
sion is somewhat incidental as the methods can be applied to arbitrary
time series. At the end of this section we relate the chaotic and diffusive
properties of our models.

One of our difficulties of the Gaspard et al. experiment(1) is that the
interval between their measurements (1�60 s) is so much greater than the
relevant time scale (10&12 s) of the dynamics, that is the time interval deter-
mined by collisions between the Brownian particle and the other particles
in the fluid. It is thus important to clarify the issue of what time scales are
relevant in our models, so that the simulation results can be put in context.
There are three relevant time scales here, the time taken for the particle to
traverse the length of a scatterer (defined to be of order one time unit; see
Section 2.2), the mean free time between collisions {� , and the time at which
the particle begins to notice the finite size L of the system (when it is not
infinite). It turns out (see Section 3.3) that all the random and periodic
models except FP have a well defined diffusion coefficient D, so in these
cases the time taken to reach the boundary is of order L2�D.

The mean free time can be calculated exactly (see the Appendix) and
is given by {� F=1, {� R=?�(2 - 2)r1.111 and {� L=- ?�2r1.253 for the F,
R, and L models respectively, independent of the size of the system (ignor-
ing the case of absorbing boundaries). We have checked these values
numerically, sand.the results agree within their uncertainties of about 0.002.
It is clear that all the time scales in these models are of order one time unit,
except those defined by the boundary. This means that a time step of one
time unit should be sufficient to observe effects due to the microscopic
chaos in the tune series analysis methods of Sections 4 and 5.

3.2. Microscopic Dynamical Properties

We began with the notion of microscopic chaos as the presence of a
positive Lyapunov exponent arising from collisions with strictly convex
scatterers, or as a positive Kolmogorov�Sinai entropy quantifying the lack
of predictability of a chaotic system. We now want to make these ideas
more precise and clarify what is known and what is conjectured about our
models.
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4 We include here one model exhibiting superdiffusion, see Section 3.3.



From a mathematical point of view, there are a large number of
dynamical properties that a system may exhibit.(9) Those of interest to us
are

1. Ergodicity. We need ergodicity for the time series analysis methods
of Sections 4 and 5; that is, a single long trajectory is supposed to sample
the dynamics of the whole phase space. We either know or conjecture that
ergodicity holds in all of our models (see below).

2. Decay of velocity correlations. We note that Eqs. (6) and (8)
below give the diffusion and Burnett coefficients as integrals over velocity
autocorrelation functions: the diffusion coefficient involves two-time
correlations, while the Burnett coefficient involves four-time correlations.
For these coefficients to be defined the appropriate correlations must decay
sufficiently quickly.5 Numerical evidence for the existence or nonexistence
of these coefficients for our models is given in Section 3.3.

3. A positive Lyapunov exponent, corresponding to exponential
separation of initially close trajectories, follows from the shape of the
scatterers. The Lorentz gas has a positive Lyapunov exponent due to its
convex scatterers, while the wind-tree models have all zero Lyapunov
exponents due to their (piecewise) flat scatterers.6

4. A positive Kolmogorov�Sinai entropy, which is our definition of
chaos, and which the Cohen�Procaccia method (see Section 4) is designed
to compute. We either know or conjecture that the KS entropy is equal
to the sum of the positive Lyapunov exponents in our models (Pesin's
theorem, see below). Actually there is at most one positive Lyapunov expo-
nent in these systems.

5. Periodic orbit properties sensitive to chaoticity are described in
Section 5 and used in Sections 5 and 6.

We now briefly discuss what is known about our models regarding
these dynamical properties. The periodic Lorentz gas has exponential decay
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5 Mixing (which implies ergodicity) is equivalent to the statement that all two time correlation
functions decay, not just velocity correlations. It is neither necessary nor sufficient for the
existence of the diffusion coefficient: it is not necessary because correlations other than
velocity correlations need not decay in a diffusive system, and it is not sufficient because the
velocity correlation could decay too slowly for the integral to converge.

6 We are not interested in the exact value of the Lyapunov exponent in the Lorentz gas
(although it is easy to calculate numerically) because there is no general relation linking it
to, for example, the diffusion coefficient. For example, in our wind-tree models the Lyapunov
exponent is zero, but the diffusion coefficient remains positive. The same is true for the KS
entropy.



of (all two time) correlations, (10) which implies ergodicity and the con-
vergence of the integral in (6) below. For (8) see ref. 11. The periodic wind-
tree models are generically7 ergodic. (12) Pesin's theorem holds for all of
these [F, R, L] P models, see refs. 9 and 13 for the Lorentz gas and ref. 12
for the wind-tree models.

The infinite models are much more difficult to treat rigorously because
the phase space is not compact. In order to make reasonable conjectures
about the above properties, we use the solution of the diffusion equation
(2) below, which is verified numerically in Section 3.3 for the models
[F, R, L]�, to argue that the number of different scatterers hit by the par-
ticle in time t is proportional to t� log t, as follows. In two dimensions, the
probability density of the particle being at any point decays as 1�t. This
means that in a time t, the particle comes close (say, within a radius =) to
the point a number of times proportional to the integral of 1�t, that is log t.
If the point corresponds to the location of a scatterer, we could say that the
particle collides with each scatterer a number of times proportional to log t.
In this case the total number of different scatterers hit by the particle in
time t might be expected to grow proportional to t� log t, which is what we
find numerically in Fig. 4.

These observations have the following consequences for the chaotic
properties of the infinite models. Because the particle returns to each scat-
terer an infinite number of times, we expect that it passes arbitrarily close
to every point in phase space, that is, the system is ergodic. The KS
entropy gives the amount of information per unit time required to predict
the trajectory knowing its infinite past. The unpredictability has two
sources, the instability associated with the collisions in the Lorentz gas
(that is, the positive Lyapunov exponent), and the random positions of the
scatterers with which the particle has not yet collided in all the models.
The number of different scatterers hit by the particle grows as t� log t, so
the rate decreases to zero as 1� log t. We conclude from this argument that
the random positions of the scatterers do not contribute to the KS entropy,
although results at finite time might suggest otherwise, given that 1� log t
decays so slowly. In other words, Pesin's theorem is satisfied for these
infinite models also.8
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7 The term generic here denotes a positive measure of scatterer configurations, as opposed to
initial positions of the particle.

8 The argument hinges on the solution of the diffusion equation (Eq. (1) below) in two dimen-
sions. In three dimensions, the density decays as t&3�2 which is integrable at infinity, so that
the particle collides with each scatterer only a finite number of times and thus does not
sample the whole phase space. In addition, there is a contribution to the KS entropy from
the random positions of the scatterers, thus violating Pesin's theorem. There is no contra-
diction here; the proofs of Pesin's theorem all demand that the phase space be compact.
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Fig. 4. Numerical evidence for conjectures applying to the infinite models [F, R, L]�. If n
is the average number of different scatterers hit by the particle in time t, we expect that n
should be roughly proportional to t� log t for large t. Here we plot t�n as a function of t, which
should thus be a straight line on a linear-log scale, as is observed.

We have discussed a number of dynamical properties with regard to
our models. The chaotic Lorentz gas satisfies more of these properties than
the nonchaotic wind-tree models. Chaos is defined here by positive KS
entropy and is clearly relevant to diffusion, yet we show in subsequent
sections that the periodic orbit properties also appear to be relevant to
diffusion. The conclusion discusses an example of a model which is chaotic
as it has positive KS entropy, but has periodic orbit properties and dif-
fusive properties more similar to the nonchaotic wind-tree models.
Although we have a substantial number of relevant numerical results
below, a full understanding of the dynamical properties (KS entropy, peri-
odic orbit properties or perhaps others) most closely related to diffusion
still eludes us.
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3.3. Macroscopic Diffusion

Now we discuss diffusive properties. We begin with the diffusion equa-
tion, and then relate it to the mean square displacement of a particle. The
diffusion equation9

�P
�t

=D {2P (1)

for a probability density P(x, t) with a constant diffusion coefficient D is
linear. Thus its general solution is an integral over Green's functions given
by the solution for an initial Dirac delta distribution P(x, 0)=$(x&x0),
that is,

P(x, t)=(4?Dt)&d�2 exp _&
(x&x0)2

4Dt & (2)

is the conditional probability density that a particle initially at the point x0

will be at the point x a time t later; this is therefore a 2-time probability
distribution (or density) function. The spatial dimension d=2 in our case.

The diffusion equation is known to hold for the probability density of
a particle undergoing deterministic dynamics in a number of systems
including the Lorentz gas.(7) In the diffusion equation a macroscopic
approximation is used, implying that P(x, t) is an average over space and
time scales large compared to the characteristic microscopic lengths and
times of the dynamics. The mean square displacement of the particle in the
x-direction after a macroscopic time t is obtained from (2),

(2x2) =| 2x2 P(x, t) dx=2Dt (3)

where 2x=x&x0 . This is the Einstein relation for diffusion. Note that
x=x(t) is now an explicit function of time. Similarly, the fourth and sixth
cumulants are

(2x4) c #(2x4)&3(2x2) 2=0 (4)

(2x6) c #(2x6)&10(2x4)(2x2)+15(2x2) 3=0 (5)

respectively. It is also possible to obtain dimensionless forms of the above
expressions dividing them by the appropriate power of (2x2) . In this form
the fourth cumulant is usually called the kurtosis, and is a common
measure of how close a probability density is to a Gaussian distribution.

9 In Section 3.3, we have ignored the possibility of anisotropic diffusion, thus simplifying the
notation without affecting any of the arguments. The random models are isotropic due to
symmetry; for the periodic models, the coefficients D and B are replaced by tensors, of which
the x-components appear in Eqs. (3, 6�8) and Table I.
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Straightforward manipulations applied to the mean square displace-
ment lead to the Green�Kubo expression for the diffusion coefficient (if it
exists)

D=|
�

0
(vt v0) dt (6)

where v is one (say the x-) component of the velocity and the subscript
denotes the time. This shows that the existence of a diffusion coefficient is
also related to the rate of decay of the velocity autocorrelation function.
The integral diverges if the decay rate of the integrand is t&1 or slower,
unless the integrand is oscillatory. An oscillatory integrand cannot be ruled
out, but is not typical for the Lorentz gas as observed in numerical simulations.

The diffusion equation is the lowest order macroscopic description of
the diffusion process. The next approximation, in the direction of microscopic
space and time scales, i.e., when the probability density P varies sufficiently
rapidly, the right hand side of Eq. (1) may be augmented by terms such as
B {4P, where B is called the linear super-Burnett coefficient.(6) Like the
diffusion coefficient, it obeys an Einstein relation

(2x4) &3(2x2) 2=24Bt (7)

This is consistent with the zero kurtosis found previously (4): to find the
kurtosis we divided by (x2) 2 which is proportional to t2 if the diffusion
coefficient exists, while the Burnett coefficient in (7) gives a smaller term
(for large t), proportional to t. The Burnett coefficient can also be written
in the form of a Green�Kubo relation in terms of integrals over four-time
velocity correlation functions,

B= 1
6 |

�

0
|

�

0
|

�

0
((v0v1v2v3)&(v0 v1)(v2v3)

&(v0v2)(v1v3)&(v0v3)(v1v2) ) dt1 dt2 dt3 (8)

where v0=v(t=0) as above and v1=v(t=t1) etc. A slow decay of the rele-
vant correlation functions leads more easily to a divergence in this case than
in Eq. (6).(6) This means that it is possible to have a well defined diffusion
coefficient, but a divergent Burnett coefficient, which occurs if the fourth
cumulant increases faster than t but slower than t2.

We estimate the cumulants defined in Eqs. (3)�(5) numerically by
choosing a large number (typically 105) of random initial conditions for the
particle not inside a scatterer, for a single configuration of scatterers. We
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Fig. 5. The mean square displacement (3) for the six models [F, R, L][�, P4]. In each case
there is a transition between ballistic behavior (2x2) tt2 to the long time diffusive (or super-
diffusive) behavior. The FP4 model is superdiffusive, with an approximate t1.4 law; the others
exhibit normal diffusion, tt. The diffusion coefficient is largest for the F� model, followed
by L�, RP4, LP4, and R� (inset and Table I); see the discussion in the text.

report only the cumulants in the x-direction, although we have checked
that the y distribution is similar. See Figs. 5�7 and Table I.

For five models, [F, R, L]�, [R, L] P4, the mean square displace-
ment is found to be proportional to the time, and the fourth and sixth
cumulants increase slower than t2 and t3 respectively at large times,
indicating that the distribution approaches a Gaussian. The exception to
this rule is FP4, for which the mean square displacement grows faster than
the time, approximately as t1.4 and the kurtosis is also nonzero. This super-
diffusive behavior is not particularly stable in the sense that the mean
square displacement for this model has larger fluctuations than the other
models, and the exponent of approximately 1.4 varies unpredictably
between 1 and 2 with the exact positions of the scatterers and the size of
the cell (for example for FP6 or FP8).
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Fig. 6. The fourth cumulant (4) for the six models [F, R, L][�, P4]. We are mostly inter-
ested in the long time behavior, which is Gaussian when the fourth cumulant grows more
slowly than t2, as holds in all models except the superdiffusive FP4 model. The periodic
Lorentz gas LP4 has a finite Burnett coefficient, so its fourth cumulant is proportional to t
as shown. At short times for all models a ballistic t4 behavior is followed by an intermediate
regime in which all models exhibit a change of sign which appears as a dip due to the
logarithmic axes.

3.4. Connections Between Chaotic and Diffusive Properties

We now look at how the chaotic and diffusive properties of our
models are related in the light of our results, specifically of: (a) normal dif-
fusion without chaos, (b) superdiffusion without chaos, (c) a possible rela-
tion between the diffusion coefficient and the periodic orbits, and (d) the
Burnett coefficient of the periodic Lorentz gas. In no way does the data
presented in Figs. 5�7 distinguish between chaotic and nonchaotic models.

Normal Diffusion. Our results show that it is possible to have a well
defined diffusion coefficient and a Gaussian distribution function without
positive Lyapunov exponents, that is, in the F�, R� and RP4 models.
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Fig. 7. The sixth cumulant (5) for the six models [F, R, L][�, P4]. The statistics are rather
poor in this case, so that delicate cancelations cannot be observed; these curves should be
viewed as upper limits on the true values for large times. It is at least plausible that all of the
models except FP4 are Gaussian, which is indicated by a growth slower than t3. At small
times the ballistic regime gives t6.

Table I. Diffusive Properties of Our Models, in Terms of the Diffusion
Coefficient D, and the Burnett Coefficient B if They Exista

model F R L

� D=0.44 D=0.14 D=0.27
P4 �� D=0.24 D=0.23, B=0.12

a The existence of these coefficients is related to the rate of decay of the velocity autocorrela-
tion functions of (6, 8). Note that by this criterion, the periodic Lorentz gas LP4 is more
``chaotic'' than the infinite Lorentz model L�, while the periodic fixed orientation wind-tree
model FP4 is less ``chaotic'' than the infinite model F�. Only typical values of the coef-
ficients for the periodic models are given, since they depend on the position of the scatterers.
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The RP4 model is particularly interesting in this regard, since the two
most obvious sources of unpredictability: dispersive collisions and collisions
with new randomly placed scatterers, are absent. Recall that we argued
(in Section 3.2) that these two processes might together determine the KS
entropy, that is, the rate of loss of information about the particle's position
and velocity. The RP4 model is thus the clearest example of a model in
which there is normal diffusion, and zero KS entropy. An example with the
same properties, using a periodic rhombus model has been studied in
ref. 14, where a mean square displacement proportional to the time was
observed, but the higher moments were not studied.

Superdiffusion. The FP4 model, in contrast, has a mean square dis-
placement growing faster than linearly with the time, and a non-Gaussian
distribution. This can be related to a slow decay of the velocity autocorre-
lation function (see above), but a physical explanation of why this occurs
in the FP4 model but not in the RP4 model is lacking.

Diffusion and Periodic Orbits. It is perhaps somewhat hazardous to
deduce more from this data than the existence of normal diffusion; however
we would nevertheless like to point out a possible connection between the
value of the diffusion coefficient (given by the vertical displacement of the
curves in the inset of Fig. 5) in the infinite models and the properties of
periodic orbits discussed in Section 5. We make no statement about the
diffusion coefficient of the periodic models because this coefficient depends
on the position of the scatterers. The idea is that the presence of periodic
orbits in a model with randomly positioned scatterers might be expected to
lower the diffusion coefficient, since the periodic orbits may keep the
particle trapped in roughly the same place; this takes time without con-
tributing to the mean square displacement. Thus we observe that the fixed
orientation wind-tree model F� has no periodic orbits and has the largest
diffusion coefficient; the random Lorentz gas L� has periodic orbits, but
they are exponentially unstable, and has the next largest diffusion coef-
ficient; the random orientation wind-tree model R� has periodic orbits
with power law instability that can inhibit diffusion for a long time, and the
diffusion coefficient is the smallest of the three.

The Burnett Coefficient. The fourth cumulant grows linearly with
time for the LP4 model, indicating a finite Burnett coefficient, as expected,
given its exponential decay of correlations.(11) The other models, F�, R�,
RP4 and L� have a divergent Burnett coefficient, which is not surprising
since their decay of correlations is most likely as a power law. Thus, from
the more subtle properties of the two time (displacement) correlation func-
tion, we can deduce some properties relating to the rate of decay of higher
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order correlations, even special four-time (velocity) correlations, but not
whether there is a positive Lyapunov exponent, since L� behaves similarly
to R� from this point of view. Even in the intermediate region between the
ballistic behavior at small times and the (super)-diffusive behavior at large
times in Fig. 5, that is, where the distribution functions are measured at
microscopic time scales, there is no clear distinction between the chaotic
and nonchaotic models.

We have now discussed at some length the connection between chaotic
and diffusive properties of our models. While this has yielded valuable
insight into how little chaoticity is needed for diffusion to occur, it has not
provided us with an understanding of how chaotic and nonchaotic diffu-
sion differ, let alone a method to distinguish chaotic and nonchaotic dif-
fusive systems experimentally. The reason, given in ref. 15 is that two time
correlations (for example our cumulants) are insufficient to characterize
chaos; multi-time correlations (or their underlying probability distribu-
tions) are required. The remaining sections of this paper all use multi-time
distributions of one form or another to investigate our models. We begin
with a more detailed study of the Grassberger�Procaccia method than in
ref. 2, where we found it to incorrectly classify the F� model as chaotic.

4. THE GRASSBERGER�PROCACCIA METHOD

Grassberger and Procaccia(4) gave the earliest practical methods for
computing chaotic properties such as entropies and dimensions from
experimental or computer generated time series. These are still the most
popular methods in use, sometimes with minor variations. In ref. 1 the con-
clusion of microscopic chaos using data from a Brownian motion experi-
ment was based on a slightly different method of Cohen and Procaccia.(3)

Both methods are clearly reviewed in ref. 9.
We consider these methods as applied to the calculation of the KS

entropy K, the non-zero value of which-characterizes chaos. We recall the
discussion of Section 3.2 where we concluded that the wind-tree models all
have zero KS entropy, but the Lorentz gas has a KS entropy equal to its
positive Lyapunov exponent.

The original Grassberger�Procaccia method(4) computes a slightly dif-
ferent dynamical entropy K2 (defined using the square of the probability,
p2 rather than the conventional p log p) satisfying the inequality K2<K.
Thus a positive estimate K2>0 implies that K>0 and hence chaoticity. We
follow ref. 1 in using an adaptation due to Cohen and Procaccia(3) that
allows K to be estimated directly.

We replace the experimental tune series of the positions of the Brownian
particle in ref. 1 by a numerical time series of any of our infinite or periodic
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diffusive models, containing the x and y positions of the particle at 106

times uniformly spaced by a separation 2t. Unlike ref. 1,10 our values of 2t,
equal to 1 and 0.01 time units are close to the dynamical time scale deter-
mined by the mean free time {� (see Section 3.1).

A single point on our numerical trajectory is denoted (xi , yi ), where
i is an integer ranging from 0 to 106&1. For the fixed oriented square (F)
models the trajectory contains all the phase space information except the
velocity which can take only four values in this case. For the randomly
oriented square (R) and the Lorentz (L) models the velocity has one con-
tinuous degree of freedom. The Brownian motion experiment uses only one
component (say, x) of the particle position, ignoring the huge number of
other degrees of freedom contained in the fluid system. From a mathemati-
cal point of view, as long as the degrees of freedom are all coupled (that
is, all the degrees of freedom depend on each other directly or indirectly),
this type of method usually converges to the correct entropy (or dimen-
sion) using as few as one measured variable, however the efficiency may
then well be such that an unreasonably large number of data points is
required for a reliable estimate of these quantities.

A number (typically 102 to 103) of (in our case non-overlapping)
uniformly spaced subsequences of the long trajectory are denoted ``reference
segments'' (``reference trajectories'' in ref. 1), having lengths n ranging from
1 to 100. These reference segments are compared with all subsequences of
the trajectory having the same length. The comparison is made according
to the position relative to the initial point of peach subsequence, with a
Euclidean metric in real space and a maximum metric over the trajectory.
Thus, if i and j give the positions in the full trajectory of the initial points
of the M reference segments and Nr106 total segments respectively, the
distance between the segments beginning at i and j is defined as

dn(i, j)=max
n&1

k=0
- (2xi+k&2x j+k)2+(2y i+k&2yj+k)2 (9)

where 2xi+k=x i+k&xi etc.
We are now in a position to count the number of recurrences, in what

is called ``pattern probability'' in ref. 1. For a given tolerance or spatial
resolution = we can define the probability of a certain pattern defined by the
reference sequence beginning at i as the proportion of all the subsequences
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notation { for time steps to avoid confusion with the mean free time.



of the full trajectory that are within a distance (as defined above) = of the
reference sequence:

P(i, n, =, 2t)=
1
N

*j[dn(i, j)<=] (10)

and from this the ``pattern entropy''

K(n, =, 2t)=&
1
M

:
i

log10 P(i, n, =, 2t) (11)

which gives the information theoretic entropy of the dynamics with respect
to the pattern (of length n and resolution =) probability distribution. The
pattern entropy thus contains information about the n-time (displacement)
distribution functions, as suggested by the discussion at the end of the
previous section.

When the pattern entropy increases linearly with time in the limit of
large n, it is possible to define an entropy per unit time,

h(=, 2t)=
1
{

lim
n � �

[K(n+1, =, 2t)&K(n, =, 2t)] (12)

In practice n is finite, and K is always bounded above by log10 N (since it
is an average of &log10 P, where P bounded below by 1�N ) and tends to
saturate towards this value at long times. However, we can often find a
large enough linear region in a plot of K as a function of n (for fixed = and
2t) to compute h(=, 2t). In ref. 1 h(=, 2t) was plotted as a function of = with
different curves corresponding to different 2t. From dimensional arguments
it follows that any diffusive process has a scale invariance leading to a
dependence ht1�=2, which is in fact observed in such plots.

Assuming that there is sufficient data that all the limits (of large N, M
and n) can be approximated reliably, the KS entropy K is equal to the
maximum value of h(=, 2t) as = and 2t are varied. The measured value
h(=, 2t) will be less than the true KS entropy K if the values of = and or
2t are so large that not all of the information contained in the dynamics
is represented in the time series. This effect does not explain why a non-
chaotic system may appear to be chaotic, that is, why the measured value
of h(=, 2t) is greater than K=0, as in ref. 2: this must be due to a problem
with the above mentioned limits, and we defer a discussion of this point
until after we have presented our results.

Our results for each of the six models [F, R, L][�, P4] are
illustrated in Fig. 8 with 2t=1 and in Fig. 9 with 2t=0.01. The case 2t=1
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Fig. 8. The pattern entropy K(n, =, 2t), Eq. (11), plotted against the segment length n for a
time step {=1. The models (see Section 2.3) are F (upper), R (middle) and L (lower), each
with � (left) and P4 (right). The different curves on each graph correspond to different values
of = from approximately 0.3 to 300 in multiples of 1.21; large values of = correspond to smaller
pattern entropies since the probability of recurrences P(i, n, =, {) is then larger. A linear
behavior indicates positive KS entropy, so both chaotic and nonchaotic models appear to be
chaotic except the superdiffusive model FP4; see the discussion in the text.
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Fig. 9. The pattern entropy K(n, =, 2t), Eq. (11), plotted against the segment length n for a
time step 2t=0.01. See Fig. 8 for details, except that the range of = is now approximately 0.03
to 30. At short times, the trajectories are mostly uninterrupted straight lines, and hence do not
appear chaotic; the lines curve with decreasing gradient. At longer times, there are some colli-
sions, leading to a straightening (more chaotic behavior). The chaotic and nonchaotic models
look the same, as in Fig. 8 except that the particle in the F models has only four velocity
directions, leading to the characteristic feature below an entropy equal to log10 4r0.6.
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samples the motion of the particle as it begins to diffuse among the scat-
terers. The models (both chaotic and nonchaotic) are indistinguishable,
with the linear growth of the pattern entropy suggesting positive KS
entropy, except that the superdiffusive model FP4 is showing signs that the
KS entropy is zero, as a nonchaotic model should.

For 2t=0.01 (Fig. 9), where mostly ballistic behavior occurs, the
graphs of pattern entropy vs. number of time steps is no longer linear. The
R and L models look much the same, while the F models have an unusual
feature when the pattern entropy is equal to log10 4r0.6 which is due to
the four available wind directions, that is, only a fourth of the trajectories
at a given (x, y) point are close in phase space after a certain time. The
pattern entropy is becoming linear at larger times in all models, suggesting
positive KS entropy.

We can draw the following conclusions about the use of Grassberger�
Procaccia type methods for this class of problems: (a) measurements need
to be made at microscopic time scales, (b) even at microscopic time scales,
the method does not seem to distinguish between chaotic and nonchaotic
dynamics, and (c) the reason seems to be that unfeasibly long time series
are needed in order to do that.

Macroscopic Measurements. It is clear that in an analysis as
explained above, using large distance and time scales a diffusive system
shows itself as almost independent of its microscopic dynamics (whether
chaotic, non-chaotic or stochastic), although we cannot exclude the possi-
bility that an unreasonably long trajectory might still give some evidence
of weak correlations that survive for macroscopic times. In the Brownian
motion experiment, for example, there are of the order of 1010 collisions of
the Brownian particle with the surrounding solvent between each measure-
ment of its position, so any correlations arising from, say, nonchaotic
microscopic dynamics would be effectively averaged out between measure-
ments. This is essential from the point of view of designing future
experiments, but it is not the full story as it does not explain our results,
which are obtained using short times. The Brownian motion experiment
could not investigate the motion at short time scales, but it is important to
know whether data from an improved experiment might determine the
microscopic chaoticity in principle.

Microscopic Measurements. Our results do not suggest that the
Grassberger�Procaccia type methods can distinguish between chaotic and
nonchaotic diffusive models even at short times because the nonchaotic R
models consistently give the same results as the chaotic L models. The only
distinctions we have been able to make are between diffusion and superdif-
fusion for 2t=1, and between the continuous velocity space of the R and
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L models and the four velocity directions of the F models. Both of these
distinctions can be made from a time series without using the intensive
analysis of the Grassberger�Procaccia method.

How Long a Time Series is Required? Our wind-tree models
appear unpredictable (in the sense of positive KS entropy) because it takes
the system some time to ``realize'' that it is nonchaotic, in other words,
quite a long time series length N is required. For example, the most
pronounced nonchaotic diffusive model we have is RP4. Once the particle
``knows'' the positions and orientations of all the scatterers, the system is
completely predictable, and hence a zero KS entropy is manifest. However
it is necessary for the particle to enumerate the large number of ways of
achieving this11 with sufficient statistics that nonchaotic recurrences12

dominate the GP calculation, for which our trajectory length of N=106 is
apparently insufficient. For the infinite models such as R� the motion of
the particle is never completely predictable, but the proportion of collisions
that the particle encounters new scatterers decreases as 1�log t according to
the discussion of Section 3.2. The measurement of such a slow decrease is far
beyond the capabilities of any feasible implementation of the Grassberger�
Procaccia method.

Since the Grassberger�Procaccia approach does not seem to dis-
tinguish our chaotic and nonchaotic diffusive models, we torn to an alter-
native time series analysis method, with a view towards suggesting possible
methods for analyzing future experiments that are able to sample the
dynamics on microscopic time scales. Such a method cannot possibly
enumerate all possible trajectory segments, as discussed above, but there
are certain types of trajectory segments, namely those that are almost peri-
odic, that stand out as predictable in a nonchaotic system. The method of
the next section takes advantage of this property, and in effect distinguishes
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11 A conservative and very rough estimate for the number of ways for the particle to determine
the positions and orientations of the scatterers is as follows: It must collide with two adja-
cent sides of all four scatterers, a total of eight collisions. For each scatterer there are four
possible pairs of adjacent sides, making 44=256 combinations. The eight collisions could
occur in any order, giving an extra factor of 8!=40320. Thus our estimate is 44_8!r107.
Note that collisions may not be able to occur in any order (thus lowering the estimate), but
we have ignored situations where the particle collides with three or four sides of a scatterer,
or with the same sides more than once (thus greatly increasing the estimate). The trajectory
length would need to be substantially larger than the true number of ways the particle can
determine the scatterer configuration, in order to obtain reasonable statistics, so that non-
chaotic recurrences dominate.

12 Nonchaotic recurrences are those with a probability that decreases more slowly than
exponentially with length, indicating greater probability than is characteristic of chaotic
systems, and hence zero KS entropy.



chaotic and nonchaotic systems by singling out this subset of all possible
recurrences.

5. ALMOST PERIODIC RECURRENCES

5.1. Motivation

We have seen in Section 4 that the variant of the Grassberger�Procaccia
method used by Gaspard et al. cannot distinguish between nonchaotic and
chaotic models, for the reason that the time series (either experimental or
numerical) is not long enough to provide a reasonable approximation to
the infinite time limit implied by the method.

We can attempt to circumvent this difficulty by looking for specific
types of recurrences, as opposed to taking an average over all types of
recurring trajectory segments. In particular we will show that a promising
candidate for a useful specific recurrence is given by one that corresponds
to an orbit that is almost periodic (again, within a spatial tolerance =). We
can identify these almost periodic orbits as those that repeat (within a
distance =) their previous motion at equally spaced intervals of time, hence
the name ``Almost periodic recurrences'' (APR).

If we compare the APR, approach with the Grassberger�Procaccia (GP)
method, there are a number of similarities and differences. Both methods
are designed to deduce dynamical properties from time series data. GP
aims to make quantitative statements about the KS entropy, whereas APR
as yet only provides a qualitative statement about chaoticity as expressed
in periodic orbit properties, which are not equivalent to the usual definition
of chaos as positive KS entropy. Both methods make use of the probability
of recurrences. GP then averages over many probabilities, while APR
singles out a few especially significant recurrences. This means, for example
that in an intermittent system, where the dynamics switches irregularly
from chaotic to regular behavior, GP measures only the average, chaotic,
dynamics, while APR is sensitive to the lack of chaoticity in the regular
regions of phase space. In other words, an intermittent system can have a
positive Lyapunov exponent, and also periodic orbits with nonchaotic
properties. The APR method characterizes such a system as nonchaotic,
which is an appropriate designation with regard to diffusive properties as
we observe in Section 6 below, but which is inappropriate from the usual
point of view, which is that chaos is defined as positive KS entropy. An
example of such an intermittent system is given in the final discussion.

We now discuss the properties of periodic orbits in chaotic and non-
chaotic systems (particularly our models), before describing the APR
method in more detail and presenting the results.
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5.2. Periodic Orbits in Chaotic Systems

Periodic orbits are of great importance in chaotic systems. Although
typical trajectories (as defined by the Liouville or natural measures) are not
periodic, there are many systems for which they are approximated by peri-
odic orbits when the periodic orbits are dense in the phase space or on an
attractor. This allows many properties to be computed from expansions
involving periodic orbits.(16)

The properties of the periodic orbits are not directly related to the
other dynamical properties discussed in Section 3.2, yet they do tend to
differ between chaotic and nonchaotic systems, and so they constitute addi-
tional dynamical properties related to chaos. The properties of the periodic
orbits in the Lorentz gas are of most interest to us, and in some sense
typical for chaotic systems, so we focus on these. In this and the following
section we examine two relevant properties of periodic orbits, and sketch
proofs of these properties.

Existence. There is an easy constructive proof of the existence of
periodic orbits in the Lorentz gas: Choose two disks arbitrarily; the line
joining their centers gives a periodic orbit unless there is a disk interposing;
consider one of the original disks and the interposing disk, and repeat until
no disk interposes.

Stability. The periodic orbits are exponentially unstable, that is,
almost all trajectories beginning a small distance = from the periodic orbit
at time t=0 are at a distance =e*pt at time t, where *p is the maximum
(here the only positive) Lyapunov exponent, which depends on the peri-
odic orbit p. This exponential instability makes it very unlikely for a typical
trajectory to remain near a given periodic orbit for long times.

5.3. Periodic Orbits in Nonchaotic Systems

We study here the properties of periodic orbits of our wind-tree
models, which are typical of nonchaotic systems, without attempting to
classify all possible nonchaotic periodic behavior. For a complementary
study of the periodic orbits in polygonal billiards, see ref. 17.

Not all wind-tree models have periodic orbits. The argument given
above for the Lorentz gas fails because an orbit connecting two square
scatterers is periodic only if the scatterers have the same orientation (of
zero probability in the randomly oriented model) and the particle moves
perpendicular to the surface of the scatterers (excluded by definition in the
fixed orientation model). In general, the existence of periodic orbits depends
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on the locations and orientations of the scatterers. We will find that using
generic locations of scatterers periodic orbits exist in the R� model, but
not in the F� model. The periodic models (such as FP4 and RP4) are
harder to treat mathematically, and are not discussed here.

F Model: Nonexistence. The absence of periodic orbits for generic
configurations of the F� model follows directly from arguments in a proof
of Aarnes.(18) In order for the particle to return to its starting point, an
expression linear in the positions of the scatterers must vanish. The coef-
ficients of the (x, y) position of a scatterer in this expression are integers
depending on which faces the particle hits, and are zero only if the particle
hits opposite faces an equal number of times. A simple reductio ad absurdum
argument shows then that there is a scatterer (perhaps more than one), the
furthest to the top and right (largest value of x+ y), which has collisions
on only one of its faces (the lower left), and hence the coefficients corre-
sponding to the position of this scatterer are nonzero. If the scatterers are
randomly placed, no linear combination of the positions can vanish, so no
periodic orbit can exist. Of course, there are special configurations of the
scatterers (such as at the corners of a square aligned with the coordinate
axes) that allow periodic orbits. Since there are therefore generically no
periodic orbits in the F� model, the remainder of this section refers to the
R� model.

R Model: Existence. The existence of periodic orbits for generic
configurations of the R� model follows from the observation that any
set of configurations of a finite number of (e.g., 3) scatterers with nonzero
(Lesbesgue) measure includes configurations appearing somewhere in a
generic infinite configuration. A period 3 orbit can always be found in an
acute triangular billiard by minimizing the total path length, see Fig. 10. If
three scatterers outline an acute triangle and are positioned so that their
faces contain the path of minimal length (clearly of nonzero measure),
a period 3 orbit exists.

R Model: Stability. Finally we investigate the stability of periodic
orbits in the R� model. The combination of the linear dynamics of the free
particle with length preserving reflections leads to a linear separation of
nearby trajectories. That is, an initial separation of = in the direction of the
velocity leads to a separation =t in the position after time t. Another way
of saying this is that the number of uniformly distributed trajectories
remaining within a distance = of the periodic orbit is =�t for large t. Thus
a particle in the R� model is quite likely to spend a long time near a
periodic orbit, in contrast to in the Lorentz gas.
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Fig. 10. Construction of periodic orbits in the infinite randomly oriented wind-tree model R�.
Any acute angled triangle (dashed), generated by three scatterers (solid squares), contains a
period 3 orbit of minimal length (solid triangle). It is surrounded by a family of period 6
orbits (dotted) that differ from the period 3 orbit by the location of the collisions but not the
direction of the velocities.

5.4. Details and Results

Now we return to our method of Almost Periodic Recurrences for dis-
tinguishing chaotic properties of diffusive systems from a time series. This
consists of counting the number of almost periodic sequences in the time
series, thus hoping to exploit the different properties of periodic orbits in
chaotic and nonchaotic systems as discussed in the previous two sections.

As in the Grassberger�Procaccia method we begin with a time series
containing 106 positions of the particle (xi , yi ) spaced at a time interval
2t=1, see Section 3.1. Analogous to Eq. (9) we define a distance between
two segments of length T (the period of an almost periodic orbit) that
begin at points i and j on the trajectory,

dT (i, j)=max
T&1

k=0
- (xi+k&xj+k)2+( yi+k& yj+k)2 (13)

Using Eq. (13) we compute the number of initial points i for which the
orbit repeats within a tolerance =,

NT (i)=*i[dT (i, i+T )<=] (14)

where we use ==1 for the results presented in Fig. 11.
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Fig. 11. Results of the APR, method, showing the number of times in which a periodic orbit
of a given length T was repeated within a tolerance ==1. The models (see Section 2.3) are F
(upper), R (middle) and L (lower), each with � (left) and P4 (right). The chaotic Lorentz
models show a clear exponential decrease with T, while the nonchoatic models exhibit dis-
tinctly different behavior depending on the properties of their (almost) periodic orbits; see the
text.
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It is clear that chaotic Lorentz models, with an exponential decay of
NT with T can be easily distinguished from the nonchaotic F and R models
which mostly have a slower and noisier decay, so we have achieved our
objective of finding a time series analysis method that can distinguish
between time series of chaotic and nonchaotic diffusive systems. It remains
for us to explain the difference, and the plots obtained using the properties
of the periodic orbits in these systems. For that, we note that there are two
types of (almost) periodic orbits that might appear in the expression for
NT : An orbit of length T that has been (almost) repeated, and a shorter
orbit of length T�n that has appeared 2n times, so that the total time is
equal to 2T.

The L Models. In the Lorentz gas, the probability of remaining near
a periodic orbit for a time T is of order e&*pT (see Section 5.2), where *p

is the maximum (here the only) positive Lyapunov exponent, and depends
on the periodic orbit p. This is why both the infinite and periodic Lorentz
gases give an exponential form in Fig. 11. Because NT can be due to long
orbits or repeats of short orbits, the exponential form depends on both (1)
the exponential escape from short orbits with many repetitions and (2) the
exponential instability of orbits with length, that is, that *p does not
approach zero for long orbits.13

The R Models. In the randomly oriented wind-tree models, the
probability of remaining near a periodic orbit for a time T is of order 1�T
(see Section 5.3). This form is not immediately apparent in Fig. 11 because
orbits (particularly those surviving for long times) can be counted more
than once due to contributions from an interval of different initial points
i. Both the R� model and the RP4 model continue beyond T=100 due
to increasingly rare long orbits and many repeats of shorter orbits. For
example, the almost periodic orbit giving rise to the conspicuous point with
period T=58 in the RP4 model is repeated many times, also contributing
to multiples of the period, double T=114, 115; triple T=172, 173; and so
on up to T=1033, 1034. It is clear that the dynamics is completely different
to that of a chaotic system.

The F Models. In the fixed oriented wind-tree models, there are no
periodic orbits (see Section 5.3). This means that any contribution to NT is
due to orbits that are close to periodic. The infinite model F� contains
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many arrangements of a few scatterers that come arbitrarily close to
generating a true periodic orbit, so the plot is similar to that of the R
models. The periodic model FP4, in contrast, has only a few short orbits
that are at all close to periodic, and none that can be repeated to give
further contributions at higher values of T, or these would be observed in
the figure.

What we have presented here barely scratches the surface of the
Almost Periodic Recurrences method and its variants. It would be quite
easy to search for 3 or more occurrences of an (almost) periodic orbit, or
to distinguish between a single repeat of a long orbit and many repeats of
a short orbit. We have restricted the presentation here to a demonstration
of the method as a means to distinguish time series of chaotic and non-
chaotic diffusive systems, but we hope that it will be useful in more general
contexts.

6. ABSORBING BOUNDARY CONDITIONS

The case of absorbing boundary conditions provides a rich context for
illuminating the differences between chaotic and nonchaotic diffusion. This
is because the diffusion equation with absorbing boundary conditions leads
naturally to an exponential escape process, while the periodic orbits of the
randomly oriented wind-tree model require a power law escape process
(see Section 5.3), thus violating the diffusion equation.

We consider here the probability that a single randomly placed par-
ticle will remain in an open system14 for a given time, or equivalently, the
number of identical noninteracting particles remaining in the system after
the same time. For chaotic dynamics the escape rate formalism of Gaspard
and Nicolis(7, 19, 20) uses the escape rate (defined below) to connect the
diffusion coefficient to dynamical properties such as the KS entropy and
the positive Lyapunov exponents. For nonchaotic systems the escape process
is qualitatively different depending on the properties of the periodic orbits
as we have noted above, and the escape rate formalism must be
generalized, if it is to make any sense at all. We now describe the escape
rate formalism as it applies to chaotic systems, discuss the results for our
models, and then attempt to generalize the formalism to include non-
chaotic systems.

A macroscopic description of escape on a square (for simplicity; other
geometries are analogous) is given by the diffusion equation (1) for the

807Microscopic Chaos and Diffusion

14 We describe systems with absorbing boundaries as ``open.''



particle density P(x, t), together with the boundary condition P=0 along
the lines x=0, y=0, x=L and y=L. The general solution is

P(x, t)= :
�

m, n=1

am, n sin(m?x�L) sin(n?y�L) e&#m, nt (15)

with the decay rate

#m, n=
D?2

L2 (m2+n2) (16)

At long times, the solution is dominated by the slowest decaying mode,
corresponding to the escape rate

#=#1, 1=
2D?2

L2 (17)

Note that the escape of particles is exponential in (15). The escape rate
formalism equates this macroscopic escape rate # with the (exponential)
escape rate of a (microscopically) chaotic system, which is related to its KS
entropy K and the sum of its positive Lyapunov exponents � *+ (here at
most a single positive Lyapunov exponent) by(9)

#=: *+&K (18)

the ``escape rate formula'' which generalizes Pesin's formula (Section 3.2) to
open systems. Not only can the escape rate of chaotic systems be calculated
from periodic orbit theory, (16) but, as we will show below, there is an
intimate connection between periodic orbits and the escape process in non-
chaotic systems.

We now present our numerical results, from which we learn how the
above theory for chaotic systems is modified in the nonchaotic case. As
described in Section 2.2, the arrangement of scatterers used is the same as
in the periodic case with L=20; the absorbing boundaries are one distance
unit from the edge of the periodic cell, leading to an open system of size
L=18. As before we use fixed oriented squares (F), randomly oriented
squares (R) or circles (L). We denote absorbing boundary conditions by A,
so the full notation for these models is [F, R, L] A18. We place 107 par-
ticles uniformly (without overlapping the scatterers) in the square of size
L=18 and compute the number of particles remaining in the system as a
function of time, see Figs. 12 and 13.
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Fig. 12. The decay of the number of particles with time when the boundaries are absorbing
for the Lorentz gas LA18 (circles), randomly oriented wind-tree model RA18 (stars) and the
fixed oriented wind-tree model FA18 (squares). The decay is exponential for short times for
all three models as predicted by the diffusion equation, and model-dependent for long times.
The LA18 model remains exponential, while the RA18 model switches to a 1�t form and the
FA18 model switches to a linear tc&t form. The results are well described by the functions
L(t), R(t) and F(t) respectively, see Eqs. (19)�(21).

The chaotic Lorentz gas exhibits exponential decay as predicted by the
diffusion equation for all times, but the nonchaotic wind-tree models
deviate from exponential decay at late times. The results are well described
by the empirical expressions

L(t)=6.6_106_e&0.0165t (19)

R(t)=6.6_106_e&0.0088t+3.2_105�t (20)

6.6_106_e&0.025t t<226

F(t)={40(800&t) 226<t<800 (21)

0 t>800
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Fig. 13. Figure 12 plotted with a linear vertical axis to show the linear form of the escape
in the FA18 model.

for the L, R and F models respectively over the range of times considered.
The initial exponential decay may be compared with Eqs. (15)�(17) to give
an effective diffusion coefficient. We find DL=0.27, DR=0.14 and DF=
0.41, which are certainly consistent with the results of the mean square dis-
placement, Table I in Section 3.3, given that Eqs. (15)�(17) depend on the
macroscopic diffusion equations, and so require a large system L � �
limit. The coefficient 6.6_106 is obtained by matching Eq. (15) to the
uniform probability density of the initial conditions; this comes to 64N(0)�
?4 with N(0)=107 as the initial number of particles in the system. From
this close agreement, we conclude that the early escape is well described by
the diffusion equation with the same diffusion coefficient that appears in
the mean square displacement of Section 3.3; there is no trace of non-dif-
fusive behavior at short times.

The R Model. We now discuss the long time behavior of the non-
chaotic models. The randomly oriented wind-tree model has a 1�t decay in
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(20) due to its periodic orbits; particles that are initially close to a periodic
orbit lead to this power law as described in Section 5.3. The coefficient
gives an estimate of the density of periodic orbits; 3.2_105 is quite small
compared to the number of particles, 107, so periodic orbits are relatively
rare in a sense that is difficult to define precisely. In terms of the escape rate
formalism, a power law decay corresponds to an escape rate #=0 which
trivially satisfies (18), but yields no information about the diffusion coef-
ficient D, that is, (17) is not satisfied.

The F Model. The fixed oriented wind-tree model shows a complete
escape of all the particles in a finite tune, as might be expected from the
lack of periodic orbits. The dramatic transition from the initial exponential
decay to a much slower (at first) linear decay is somewhat surprising. We
interpret this as follows: While there are no exactly periodic orbits in the
F model, it is possible for the particle to remain in an orbit that is nearly
periodic for some time, allowing the particle to remain in the system longer
than the exponential decay would predict. If there is a bundle of trajec-
tories that survive for just 800 time units, then this would lead to a linear
law because particles are initially evenly distributed along the bundle of
trajectories. If there was, in addition, a large bundle of trajectories that sur-
vive for, say 500 time units, there would be a kink in the plot, with a sharp
decrease in gradient at t=500. The observation that the curve is close to
linear (see Fig. 13) thus implies that the lengths of these long living trajec-
tories are strongly peaked around 800 time units. One such long lived orbit
is depicted in Fig. 14; its length is seen to be due to two almost periodic
orbits. The complete escape of the particles corresponds to an escape rate
#=�, which flagrantly violates both (17) and (18) and yields no informa-
tion about the diffusion coefficient D.

We conclude from these observations that, although the wind-tree
models satisfy the diffusion equation when there are no boundaries, that is,
the two tune distribution function is of the correct Gaussian form, such a
macroscopic approximation is not valid when there are absorbing bound-
ary conditions. This means we cannot determine the diffusion coefficient in
the same way as for the Lorentz gas, Eqs. (15)�(17), that is, from

D=
1

2?2 lim
L � �

L2 lim
t � �

1
t

ln
PL(t)
PL(0)

(22)

because the infinite time limit leads to zero or infinity as explained above.
Here PL(t) is the probability of a particles remaining in a system of size L
for time t; this is obtained by observing many independent particles; and
taking the limit of an infinite number of particles.
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Fig. 14. A long lived orbit (total time tr800) in the FA18 model. Its length is mainly due
to two almost periodic orbits, a square (A), and a longer orbit that is so close to periodic that
it appears as a pair of thick lines on the scale of this plot, extending from A to B. The linear
form of Fig. 13 indicates that a few such orbits are responsible for most of the particles
remaining in the system beyond t=226, see the discussion in the text.

We can, however, attempt to calculate the diffusion coefficient in the
finite wind-tree models by taking the t � � limit at the same time as the
L � � limit. This is because the diffusion equation is a good approxima-
tion even in the open case as long as the time is not too long, and the
decay remains exponential. For example, assuming that the ``density of
periodic orbits'' in the RA model is independent of L (which seems to be
the case numerically), the transition time from exponential to power law
decay, as determined by comparing the two terms in Eq. (20) using
Eq. (17) is of order ttrrL2 log L. This should be compared with the time
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scale for which the slowest decaying mode of the diffusion equation
dominates, tDrL2, see (16). Thus, for a given L, there is a narrow range
in time tD<<t<<ttr in which the decay is exponential, and in which a limit
can be taken to obtain D from the escape process. For example we can
combine the L and t limits by setting L=u and t=u2

- log u,

D=
1

2?2 lim
u � �

1

- log u
ln

Pu(u2
- log u)

Pu(0)
(23)

We expect this relation to hold for all the models [L, R, F] A. We
emphasize that Eq. (23), if it is mathematically valid, still does not provide
a practical method for computing the diffusion coefficient beyond the
estimates we gave following Eq. (21). This is because the range of time
scales tD<<t<<ttr grows so slowly with L that extremely large system sizes
are required for more precise estimates of D.

We can also turn the argument around, and suggest that the escape at
long times of finite systems may be a good experimental technique for
detecting (or ruling out at some level) nonchaotic microscopic dynamics.
In any case, the range of validity of the diffusion equation as a macroscopic
description of nonchaotic systems is restricted.

7. DISCUSSION AND OPEN QUESTIONS

We have explored the connections between microscopic chaos and dif-
fusion. On a superficial level, the details of the microscopic dynamics seem
to have little effect on the diffusion process: Gaussian diffusion is observed
in our RP4 model, which has scatterers with flat sides (hence no exponen-
tial separation of nearby trajectories) and is periodic (hence there is no
source of randomness from a disordered environment). In addition, the
Grassberger�Procaccia method of time series analysis cannot distinguish
our chaotic and nonchaotic diffusive models because it would require
impractically long data sets. On a deeper level, however, the subtle differen-
ces between chaotic and nonchaotic diffusion are quite apparent if you
know where to look: Our time series analysis method based on periodic
orbits has no trouble distinguishing between the chaotic and nonchaotic
models, and the long time behavior of escape from an open system is also
determined by the properties of the chaotic versus nonchaotic periodic
orbits.

In the light of our results, we can make a few concrete suggestions for
an experimental determination of the chaotic or nonchaotic properties in a
diffusive system. Firstly, as we remarked in ref. 2, it is necessary to make
measurements on the distance and tune scales relevant to the microscopic
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dynamics. In our models, this question is simplified by the fact that all
microscopic time scales are of order one in our units, Section 3.1. Once this
is achieved, one could use an approach based on the method of Almost
Periodic Recurrences, which searches for periodic behavior; alternatively
the late time decay of particles from an open system can also elicit the
chaotic or nonchaotic nature of the dynamics.

This raises again the question of exactly what dynamical properties
would be measured; there are systems with the positive KS entropy of the
Lorentz gas as well as the power law unstable periodic orbits of the wind-
tree models. We will now make some remarks about such systems,
although we make no attempt to enumerate all degrees and classes of
chaotic dynamics.

Our example in this discussion is a model containing both circular and
randomly oriented square scatterers. The circular scatterers lead, as in the
Lorentz gas, to a positive Lyapunov exponent, while the square scatterers
lead, as in the randomly oriented wind-tree model, to power law unstable
periodic orbits, using the same argument as in Section 5.3. We have not
simulated such a model numerically; however the arguments used in the
previous sections may be applied, leading to the following predictions:

Section 3.4. There will be a positive diffusion coefficient with a
Gaussian distribution function, as in both the L and R models.

Section 4. The Grassberger�Procaccia method will describe the
dynamics as chaotic, due to a positive Lyapunov exponent and hence
positive KS entropy, as in the L models.

Section 5. The APR method will describe the dynamics as non-
chaotic, due to the power law unstable periodic orbits, as in the R models.

Section 6. Such a system with absorbing boundaries will exhibit
power law escape at long times, again due to the periodic orbits, as in the
R model.

The different conclusions reached by the GP and APR methods exem-
plify the fact that these methods are based on different dynamical proper-
ties; for diffusion in an open system, it is clear that the mixed model is most
similar to the R model, and hence that the APR method distinguishes the
relevant dynamical property in this case.

We conclude with some open questions and possibilities for further
work. In terms of microscopic chaos, we have studied only a few models.
We note that there are examples of lack of chaoticity we have not con-
sidered, such as the coexistence of chaotic and nonchaotic regions found in
KAM theory. In terms of diffusion, we note that in the light of Section 6
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the diffusion equation is not a complete macroscopic description of non-
chaotic diffusion. In terms of time series analysis, our APR, method, while
sufficient for our purposes here, could be much more developed and
applied. With regard to periodic orbit theory, the methods developed for
exploiting the importance of periodic orbits to compute properties of
chaotic systems(16) do not apply to nonchaotic systems, and yet we have
seen that periodic orbits also play an important role in nonchaotic systems.

We note that our infinite models, while sharing some of the properties
of corresponding finite billiards, appear to fall outside the domain of
current mathematics. For example, a recent study of infinite billiard
systems(21) is mostly restricted to cases with finite areas that are finitely
connected; our models obey neither of these conditions. It would be inter-
esting to see if it is possible to rigorously determine the status of our
models, particularly their ergodic properties, rate of decay of correlations
and Kolmogorov�Sinai entropy within the framework of some mathemati-
cal theory of infinite nonchaotic systems. More generally, a mathematical
understanding of statistical mechanics including the thermodynamic limit
naturally leads to the study of infinite systems.

Finally, we remark that all the models we have considered��with the
exception of one (FP4)��are diffusive, limiting our investigation as to
the presence of microscopic chaos or not to such systems. In addition, the
precise role played by microscopic chaos��as represented by the Lyapunov
exponents��and ``macroscopic chaos,'' as embodied by the randomly
placed scatterers for the existence of a diffusion process and the value of the
diffusion coefficient, remains open. A similar but more complicated situation
obtains when diffusion of momentum (viscosity) or energy (heat conduction)
and other transport processes are considered.

APPENDIX A. THE MEAN FREE TIME

We give here a calculation of the mean free time for our models
quoted in Section 3.1. Our derivation is due to Chernov, (22) extended to the
fixed oriented model, and with a technical caveat for the infinite models.
Refer to Section 2.2 for the definitions of R, L, N and \.

The mean free time {� is equal to the mean free path, since the velocity
is one. The mean free time is known exactly for billiard systems, (22) which
include the [R,L]P models discussed here. We make a minor extension to
allow the FP model (which differs because we do not want to allow all
velocity directions). We expect that the formula for the mean free time
would still hold in the infinite models on physical grounds, but we cannot
justify this mathematically. Briefly, the argument in ref. 22 observes that the
total volume of phase space V can be computed in two different ways.
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One expression for the volume of phase space is as an integral over the
area of the billiard, giving V=4A for the original wind-tree model with
fixed orientations, and V=2?A for random orientations or the Lorentz
gas. Here, V is the volume of phase space, including both position and
velocity, while A is the area accessible to the point particle. For our infinite
billiards we think of a large but finite periodic system of length L, and
formally take the limit L � � at the end of the calculation. Since the area
A is equal to L2(1&\), we have A=L2�2 here as \=1�2. The prefactor 4
comes from the four possible wind directions, and the 2? from integrating
over all possible directions. Putting these expressions together we have V=
4L2(1&\) for fixed oriented squares and V=2?L2(1&\) for randomly
oriented squares or circles.

An alternative expression for the volume of phase space is an integral
over the boundary of the billiard, where the contribution from each point
is given by the free path�time {. In this way we find V=- 2 {� P for fixed
oriented squares and V=2{� P for randomly oriented squares or circles.
Here P is the length of the boundary, that is, the total perimeter of all the
scatterers, {� is the mean free path�time, and the numerical prefactor is the
integral over the component of velocity perpendicular to the boundary. For
the wind-tree models we have P=4 - 2 N where N is the number of scat-
terers, so P=2 - 2 \L2; for the Lorentz gas, we have P=2?RN=- 2? \L2.

Comparing the expressions for V in both calculations, we find {� =
(1&\)�\=1 (using our value of \=1�2) for the case of fixed oriented
squares, {� =?(1&\)�(2 - 2 \)=?�(2 - 2)r1.111 for the case of random
oriented squares, and {� =- ?�2 (1&\)�\=- ?�2r1.253 for the Lorentz
gas.
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